×

linear oscillator meaning in Chinese

线性振荡器
线性振子
线振子

Examples

  1. For small displacement u , the oscillator is a duffing - type cubic non - linear oscillator , while for large displacement u , the oscillator approximates to a linear harmonic oscillator
    所谓达芬谐波振子是指当位移远小于1时,系统可化为三次非线性振子,而当位移远大于1时,该系统则化为线性谐波振子。
  2. The author has calculated the spontaneous radiate probabilities , the linear oscillator strengths , branching ratio of tm3 + iones by judd - oflet theory . according to the j - o calculated data , the transition 1g4 ? 3h6 was stronger than the transition 1g4 ? 3h4 . it was agreement with the emission spectra
    3 )对tbzre玻璃,用j ? o理论计算了各光谱参数,从1g4能级的跃迁分支比从理论上得出480nm波长的光相对650nm波长的光强,这与发射光谱图是相符合的。
  3. In order to prove the existence of the periodic boucing solutions , firstly we will introduce a new coordinate transformation , transform the system from right half plane to the whole plane . and give the relation of the eigenvalues of hill ' s equation and the rotation numbers , using this approach and pioncar - birkhoff twist theorem , we proved the existence of the periodic bouncing solutions for asymptotical linear oscillator
    对于周期解的存在性证明,我们引进新的坐标变换把右半平面上的碰撞问题转化到整个平面上,给出旋转数与hill方程的特征值的关系,并以此来度量渐近线性振子,再应用pioncar - birkhoff扭转定理得到周期碰撞解的存在性。
  4. Impact oscillator is an important model of nonsmooth dynamical system . in this article , we study the dynamics of elastic imapact oscillators . we will consider the asymptotically linear oscillator and study it in two parts : the existence of periodic bouncing solutions ; the lagrange stability of impact motion
    碰撞振子是非光滑动力系统中一类重要模型,本文讨论弹性碰撞振子的动态行为,主要考虑渐近线性振子的碰撞解,文章分两部分:周期碰撞解的存在性;碰撞运动的lagrange稳定性。

Related Words

  1. filter oscillator
  2. af oscillator
  3. field oscillator
  4. subharmonic oscillator
  5. laser oscillator
  6. forecast oscillator
  7. subcarrier oscillator
  8. piezo oscillator
  9. subaudio oscillator
  10. keyboard oscillator
  11. linear oscillation
  12. linear oscillations
  13. linear otpical system
  14. linear output
PC Version

Copyright © 2018 WordTech Co.